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The article studies the application of the slanted-edge method to test the optical resolution of a system of lens integrated 
into a robotic vision system and generally for studying a featured optoelectronic device with adaptive optics. The variety of 
camera usage conditions, including vibrations, degradation of lens coatings, etc. requires resolution verification operations, 
often on the go or on the fly. The slanted-edge method focuses on soft procedures, allowing for remote resolution control. 
The described method is useful because of the fact that the camera to be tested does not need necessarily to be 
dismounted and placed on the test stand. It does not require the use of a special test chart for verifying the resolution. It can 
also be applied on infrared viewing cameras, thermal imaging camera, X-rays imager, medical imaging and radiological 
anatomy and in many other control and security applications. 
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1. Introduction 
 
The calculation method of the modulation transfer 

function for an imaging system has been developed  
simultaneusly  with the progress of new optical sensors for 
cameras. The use of the slanted-edge method for testing 
camera resolution has been of interest for researchers 
before the appearance of digital optical sensors, when 
photography was done on photographic film [1, 2, 18-23] 
and the recording of the light gradient from a testing slant 
edge was performed using the microdensitometer. 
Currently, the performance of digital optical sensors 
allows a good enough sampling rate of the light gradient 
from a slant edge. 

 

2. Basic optical model 
 
2.1. The effect of the diffraction phenomenon on a  
       circular aperture 
 
An area of interest in imaging is the clarity of the 

images recorded by the optical system, having as main 
elements the lens system and the optical sensor. When 
examining a digital camera, we make subjective 
appreciations on how acceptable the image is.  As against 
the cameras used in robotic vision and various areas of 
security assurance, image quality measurements are re-
quired. An important metric of digital imaging systems is 
the optical resolution, Fig. 1, which determines the image 
acuity [3, 24-27].  

 

 
 

Fig. 1. Contrast transfer function vs. frequency [3-6] 
 

Image processing algorithms are sufficiently 
developed and are further developing, of course, primary 
video is very important to have the primary information to 
process. The lens system in front of the optical sensor 

must ensure an image with less optical loss in wide range 
of colour shades, a wide range of contrast ratio without 
geometrical distortions or as low as possible. The 
photosensitive cells of the optical sensor must sample the 
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image well enough as to deliver it to the imaging 
processing algorithms. The resolution of the lens system is 
limited by the phenomenon of diffraction, which most 
often suffers from aberrations. 

These effects lead to light scattering, low image 
contrast and other unwanted phenomena. Even if we had 
ideal lenses, without aberrations, wave properties of light 
make a point in the object plane to be represented in the 
image plane as a disk surrounded by rings of decreasing 
intensity, Airy disc [7].  

 

 
 

Fig. 2. Circular aperture and Fraunhofer diffraction that 
occur in camera lenses 

 

The effect of diffraction becomes observable when the 
light waves interact with the aperture of the camera lens, 
when viewing point objects, the size of which is 
comparable to one of the dominant wavelengths of the 
visible spectrum. 

An important optic phenomenon in the practice of 
designing and examining optical instruments is the 
Fraunhofer diffraction on a circular aperture [8]. 

A plane wave that interacts with the circular aperture 
of the camera located in plan Σ, Fig. 2, under certain 
interaction conditions, will create a diffraction pattern on a 
parallel plane at a distance x. Using lens L2 with long focal 
length the observation plane σ can be brought closer to the 
entrance aperture Σ, Fig. 3a. The light waves which touch 
the entrance aperture are cut by the shape of the circular 
aperture (plane Σ), and in that way they are projected onto 
the lens L2 to form the image in the focal plane, σ. It is 
obvious that the same process occurs in the human eye, in 
the telescope, the microscope, or camera lens. The image 
of a distant luminous point, given by an ideal convergent 
lens system, without aberrations and other optical 
inhomogeneities, is not a point, it is a diffraction pattern. 
 
 

 

 
 

Fig. 3. (a) Optical scheme with 2 lenses for observing Fraunhofer diffraction, (b) distribution of radiation produced by diffraction on 
the circular aperture, (c) 3D representation, (d) Airy disc from an aperture of 0.5 mm, and (e) from an aperture of 1.0 mm in diameter 
 

Because of the diffraction only part of the incidence 
wave is collected and therefore no perfect image will be 
formed. The phenomenon occurs sharply in the conditions 
in which the geometric dimensions of the examined point 
are comparable to the wavelength, the light waves are 
diffracted by the limited size circular aperture of the lens, 
which forms a diffraction pattern on the image plane, Fig. 
3 d. 

Within constant limits irradiance at point P, Fig. 2, is 
given by [8]: 

 

                         (1) 
 
Irradiance in P0 is therefore  
 

                                (2) 
εA, signal energy per unit area, A, surface, R, distance to 
point P, Jm(u), represents the Bessel function of the m 
order. 
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             (3)   
 
The numerical values of which are tabulated for a 

wide range of u, just like sinus and cosine, Jm(u), is a 
decreasing monotonous oscillatory function Fig. 4. 

 If we consider R as constant in the region of the 
pattern, the following equation can be written as: 

 

                       (4)  
 

 
 

Fig. 4. Bessel functions 
 

From Fig. 2 results sinθ=q/R, the irradiance can be 
written as a function of θ,  

 

                     
(5) 

   
as illustrated in Fig. 3 b. Due to the axial symmetry, the 
central tower-like maximum corresponds to the circular 
spot with the highest radiation, known as Airy disc, Fig. 3 
d. The central disk is surrounded by a dark ring that 
corresponds to the first 0 of the function J1(u). Radius q1 
from the centre to the first black disk surrounding the Airy 
disk, q1=3.83Rλ/2πa (value u=3.83 resulting from 
kaq/R=3.83 is taken from the Bessel table functions), then 
can be written. 
 

                             (6)   
 
For a lens with the focus in the plane σ, the focal 

distance f≈R, therefore 
 

                           (7)   

 
where D is the aperture diameter, in other words, D=2a, 
Fig. 2. The diameter of the Airy disc in the visible spec-
trum is approximately equal to f/# of the lens; q1 varies 
inversely with diameter D. When the value of D 
approaches the value of λ the Airy disc rises greatly, Fig. 3 
 d), e), [8]. 

2.2. Optical spread functions 
 

Optical transfer functions describe fundamental 
physical processes that manifest themselves in imaging 
systems. Optical imaging systems with a lens system are 
limited by the diffraction phenomenon, have aberrations 
and other optical distortions. These undesired effects 
scattered light in the picture. A CMOS imaging array 
integrates the light falling on photodetector elements, the 
light is effectively spread on the area defined by the 
dimension of the array photoelement, further spreading 
can occur as a result of the charge diffusion and charge 
transfer inefficiencies operating within the device. Point 
spread functions are the ‘building blocks’ of real images 
and will be responsible for the degradations in image 
quality (sharpness, resolution, definition, fidelity, etc.) that 
occur in imaging systems. 

The image of a point in a linear, stationary imaging 
system is a function of two orthogonal variables (x, y), 
usually taken in the same directions as the image plane 
variables xp and yp. If the system is isotropic (i.e. it has the 
same physical properties in all directions), the PSF will be 
rotationally symmetrical, and it can thus be represented by 
a function of one variable, r say, where r2=x2+y2. The 
function representation, I(x, y), I(r) - for isotropic system, 
units of light intensity (for optical systems); voltage, 
equivalent to effective exposure (CMOS). 

The shape of the PSF (in particular its extent in the x 
and y directions) determines the sharpness and resolution 
aspects of the image quality produced. If the PSF is very 
small in the x and y directions, we can expect the image 
sharpness and resolution to be good.  

The line spread function (LSF). The profile of the 
image of a line (a function of just one variable) is the line 
spread function (LSF). It is formed from the summation of 
a line of overlapping point spread functions. If the system 
is isotropic, the LSF is independent of the orientation, and 
in this case the LSF contains all the information that the 
PSF does. Fig. 5 shows the relation between the LSF and 
the PSF for a typical diffusion type imaging process. 

The input to an imaging system can be thought of as a 
two-dimensional array of very close points of varying 
value (luminance). We consider a linear and stationary 
system, the image is formed from the addition of 
overlapping, scaled PSFs in the xp and yp directions. Due 
to optical loss, it is expected that the recorded image be 
less detailed compared to the one entering the system. We 
denote the input scene as Q(xp, yp), the output image as 
Qʹ(xp, yp) and PSF as I(x,y). Mathematically, the relation 
between them is given by the imaging equation: 
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Fig. 5. Line spread function as a sum of point spread 
functions along a line[8] 

 

     (8)    
 

The equation is a two-dimensional convolution 
integral, and reflects the summation process of optical 
transfer of PSF scaling functions on the whole image. The 
integral is the summation process when the individual 
PSFs are infinitesimally close together. In shortened 

notation, Qʹ(x, y)=Q(x, y) ⊗ I(x, y) or Qʹ = Q ⊗ I, where 

the sign ⊗ denotes the convolution. 
Using the LSF instead of the PSF allows us to write a 

one-dimensional simplification: 

            (9)   
 
where L(x) is the line spread function, Q(x) is the one-
dimensional input and Qʹ(x) is one dimensional output. In 
this case, the input scenes in the system illustrated by Fig. 
5 are considered as an infinitesimally close set of lines. 
The image is formed from the addition of overlapping 
weighted line spread functions.  
 

Qʹ(x)=Q(x) ⊗ L(x)             (10)     
 
or   

Qʹ = Q ⊗ L     (11)   

 
If the inputs in a linear, stationary imaging system 

have a sinusoidal form, then the output also has a sinusoi-
dal form, usually with less amplitude due to losses. The 
image will have the same spatial frequencies as well as the 
entrance ones. The degree of modulation reduction 
depends on the spatial frequency. The low frequencies 
correspond to the coarse details of the image. High frequ-
encies have a decrease in modulation, at very high 
frequencies, the modulation can be completely lost, Fig. 6. 

 
 

Fig. 6. Spatial frequencies and the degree of modulation 
reduction [9, 10] 

 
The reduction in modulation of a particular spatial 

frequency ω is known as the modulation transfer factor. A 
graph of the modulation transfer factor against spatial 
frequency ω gives the modulation transfer function 
(MTF). Fig. 9 shows some typical curves. The MTF 
describes the reduction in modulation, or contrast, 
occurring in a particular imaging system, as a function of 
spatial frequency. Curve (c) illustrates an initial increase 
greater than 1 for low frequencies, and this is evidence of 
development adjacency effects and represents a non-
linearity of the system [8, 9] which occurs under certain 
conditions.  
 

 
 

Fig. 7. MTF, modulation transfer function graph [7-10] 
 

The Fourier analysis is successfully applied in the 
theory of imaging, and is an important tool for the 
decomposition of functions in their frequent spatial 
components. For a non-periodic function f(x), Fourier 
transform F(ω) is defined as: 






 dxxfF e
x 2

)()(                   (12)     

where F(ω) is the number of frequencies present in the 
non-periodic function f(x), Fig. 8. Eq. (12) can be 
interpreted as: for determining the amount of frequency ω, 
the function f(x) is multiply with the sinus and cosine of 
this frequency. The result is the area expressed by the 
integral, in terms of amplitude for the given frequency 
[11]. The result F(ω) is called the Fourier Spectrum, or the 
spectrum of the function f(x), of frequencies, generally 
continuous. 
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Fig. 8. Fourier decomposition [12] 
 

The unit of measurement for ω is the number of 
cycles over spatial dimension x, f(x) is a function of the 
distance (i.e., mm), therefore F(ω) is a function of the 
spatial frequency (mm-1), which means cycles/mm 
(cy/mm). 

The slanted-edge method [13], Fig. 9, illustrates the 
features of the ESF function building algorithm (edge 
spread function). 

 

 
 

Fig. 9. Image pixels projection on coordinate axis s, 
perpendicular to the gradient line of light intensity, 

oriented at the angle θ relative to the y-direction of the 
pixels. The rotation of the coordinate system allows the 

sampling interval Δs to be smaller than the interval 
between pixels, thus increasing the accuracy of the 

recorded values [13] 
 

The pixel lines Fig. 9 are reprojected on the 
coordinate axis s, inclined at the angle θ relative to the 
pixel orientation. The value of the ESF function depends 
on the distance from the gradient line. The function can be 
described as follows  

  dsjpipssESF
iE j

p

)cossin()(        (13) 

where  E jip
 is a discrete set of samples of the function 

ESF(s) for the pixels of row i, over a distance s(i, j) = 
p(jcosθ-isinθ) from the gradient line, i is the row number, j 
– column number, p is the pixel size that is the same in 
both orthogonal directions, and θ is the projection angle. 
The matrix  E jip

 corresponding to different pixel rows i, 
depends on the variation in distance s(i, j), as illustrated in  
Fig. 9. When N pixel rows are projected, sampling points 
(subpixels) accumulate on the s, forming a sampling 
pattern for the ESF function. Generally this sampling does 
not have a uniform distribution on the x-axis. The spatial 
distribution on the s axis depends on the pixel size p, 
dimension N of the pixels array, and the angle of 
reprojection θ. The samples Eij can be reordered and 
collected in equal intervals Δs (bins) as: 

  )),((
1

,
skjisbin

i j

k
k

pnESF                 (14) 

where nk is the number of pixels whose distance from the 

gradient line, s(i, j), falls within the interval 
 

)
2

1
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)

2

1
( sk   and  )),(( skjisbin   is the rectangular function 

defined to have the value of 1 for 
 

2
),(

s
skjis

  , and zero 

elsewhere. 
Generally for a finite image array and a small 

reprojection angle, the variation nk depends of the interval 
Δs and the pixel size, p. If Δs ~ p, a large number of 
reprojected pixels are averaged within each bin and the 
reprojection/binning operation is equivalent to a periodic 
sampling of the presampled ESF with a large, uniform 
aperture. Noise in the measured ESF is small due to the 
averaging of a large number of pixels, but the large 
aperture causes poor spatial frequency response. If 
Δs << p, the average number of reprojected pixels within 
each bin is markedly reduced; the ESF will be finely 
sampled, but the noise may become objectionable [13-17]. 

Image quality and MTF. Image quality involves psy-
chophysiological processes of perception of the various 
physical characteristics of the image. The MTF charac-
terizes those image attributes that contribute to the 
subjective perception of quality, such as sharpness and 
resolution. The term sharpness refers to the subjective 
impression produced by an edge of the image in the visual 
perception of the observer. The degree of sharpness 
depends on the shape and of the edge profile, the edge 
between different contrast regions of the image, but the 
perception being subjective is complex and difficult to 
evaluate. In the digital camera, the image clarity is 
determined by the lens quality, optical system, and 
mathematical algorithms of pixel processing. The line 
spread function is obtained by the numerical derivation of 
the edge spread function that contains the light intensity 
profile. Researches in recent years were oriented to 
establish the image quality model. In all cases, the features 
of the MTF curve were taken into consideration. The MTF 
theory is considered to be one of the most important tools 
available to image scientists. The Fourier theory is also 
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essential for the understanding of other imaging aspects 
such as optical information, noise and image processing. 

 
 
3. The algorithm and numerical results 
 
The camera resolution can be checked with special 

test charts with various spatial frequencies,  
Fig. 1, or by using the slanted-edge method. The 

second method involves a number of preparatory 
operations, a series of calculations for building the MTF 
function graph, contrast versus frequency, cy/px or cy/mm, 
or lp/mm. An advantage of the slanted-edge method is 
that, when we do not have a special resolution test chart or 
we cannot remove the camera from the device to test it on 
the lab bench, then we can perform slanted-edge resolution 
measurements, in optimum lighting conditions. Also, both 
methods, the resolution test chart and the slanted-edge 
method, complement each other. 

The aim of the algorithm is to calculate the 
modulation transfer function. Which means: with the 
increase in spatial frequency, the contrast decreases (Fig. 
1). 

Algorithm summary: 
1) a slanted-edge object is selected (Fig. 10a). Within 

the object frame, that contains a slant edge, is the selected 
region of interest, ROI, with linear edge and good contrast 
(Fig. 10c). 

2) The image ROI is registered (Fig. 10c). 

3) For each pixels line in the ROI, the centroid points 
are calculated (through which the slant edge passes) 
(Figs. 13b, 14a, 14b). 

4) Using the least squares method and linear 
regression, the angle of the slant edge is calculated (Figs. 
11, 15). 

5) The edge spread function, ESF, is calculated (Fig. 
16). For this, the over-sampling procedure is applied (Fig. 
12b), the coordinate system is rotated at the angle 
calculated in p. 4), (Fig. 9, 10b, 11, 12). The coordinate 
axis, x', is divided into sampling intervals. ROI pixels are 
projected on the x' axis, which is perpendicular to the slant 
edge (Fig. 9, 11, 12b). The pixel average is calculated, 
being in each sampling interval, as a result of projection 
on the x axis. The ESF function is built. On the x axis, the 
number of sampling interval, on the y axis, pixels average 
value of that interval. 

6) The line spread function LSF is calculated (Fig. 
18), which is the result of the numerical derivation of ESF, 
p. 5). To eliminate the noise, the Hamming window 
method is applied 

7) The modulation transfer function, MTF expresses 
quantitatively the quality of the optical system. 

The method is based on a well-defined calculation 
algorithm. After the preparatory actions, the procedure 
starts by recording a slant edge at an angle of 5-7 degrees 
relative to the horizontal - the vertical or horizontal pixels 
of the CMOS optical sensor. To ensure the quality of the 
measurements, the edge must be as close to a straight line 
and it is necessary to have a sufficiently good contrast, 
Fig. 10 a. 

 

 
 

 
Fig. 10. (a) target object, slant edge, (b) the image of a slanted-edge object, projected onto the CMOS optical sensor pixel 

array, (c) example of slant edge sampling by the optical sensor array, pixel size: 0.00428 mm (4.28 μm), (d) intensity profile of 
slant edge, at the same contrast there may be more degrees of sharpness 

 
The linear edge image on the CMOS sensor array 

appears as a light gradient from low intensity (dark area) 
to increased intensity, luminous area (Fig.10 b). 

 
 
 
 
 

Therefore, the optical sensor pixels array will record 
the image of the slanted-edge object.  
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Fig. 11. Enlarged image of the registered region of 
interest, the oblique interrupted line is the light gradient 

slope, magnification x400 
 
The slanted-edge image is always more diffused than 

the slanted-edge object because of the diffraction 
phenomenon on the lens entrance aperture, phenomenon 
described in the theoretical part. A statistical analysis of 
the pixels is performed in the nearness of the light 
gradient, to calculate the edge angle, which serves to build 
the ESF function. 

The interrupted line frame, Fig. 10 c) represents the 
region of interest ROI, is selected so as to include a 
suitable part of the slant edge, from which the edge slope 
is calculated, the y axis, Fig. 10 b, after which the pixels 
are projected on the x axis, Fig. 10 b, with a sampling 
interval of 1/4 pixel, Fig. 12, the ESF function is built, Fig. 
10 d.  

The calculation method of the optical modulation 
transfer curve was applied to an adaptive optoelectronic 
system with optical sensor APS-C CMOS, 22.3x14.9 mm, 
diagonal of 26.8 mm 5184x3456 px, 18M, pixel size 4.28 
μm/px (Canon). In this case, the optical sensor serves as a 
sampling device of the test image Fig. 10 b. 

When performing the experimental data recorded for 
building the MTF curve, the recommendations of ISO 
12233 have been followed. 

An important feature of the method is to create the 1D 
profile of the intensity of the slanted light gradient of the 
edge, by projection of pixels located on lines parallel to 
the y axis, with sampled step of 1/4 pixel, Fig. 10 a and 
Fig. 12 b. To calculate the angle of the slant edge the 
centroid of each line of pixels is calculated, from top to 
bottom. Through the centroid points so identified, using 

the least square method, a line is drawn, that indicates the 
angle of the slant edge. 

A region of interest, 48x24 pixel, has been selected 
from a slanted-edge image, Fig. 10 c and Fig. 11. The 
contrast of the selected image must be greater than 20-
25%, to build the threshold function, ESF. The region of 
interest ROI represents a pixel array of 48 rows x 24 
columns, which is analyzed line by line, to calculate the 
centroid for each line and calculate the light gradient slope 
angle, using the least square method. The pixel lines of the 
region of interest are illustrated in Fig. 13 a. The numbers 
indicate the pixel values between 0 (black) - 255 (white). 

 Each pixel line is derived by the convolution method 
of two numeric vectors, one representing the pixel line [1 
x n] and another, of the FIR filter type (finite impulse 
response) with coefficients: [-0.5, 0.5], (response 
function). The calculation was made using the function: 
w=conv(u,v); from the MatLab library, the variable w of 
type array saves the result of the convolution, of the two 
numerical vectors u and v. Let m=length(u) and 
n=length(v), then w is a vector of length w=m+n-1, the k-
the element of which is calculated: 
 

 
 

Fig. 12. Over-sampling pixels on the x-direction due to 
the rotation of the coordinate axis at angle θ, b). 

 
 

 )1()()(  jkvjukw
j                      (15) 

 
for all values of j, u(j) and v(k-j+1), for m=n, we obtained: 
 

w(1) = u(1)*v(1) 
w(2) = u(1)*v(2)+u(2)*v(1) 

w(3) = u(1)*v(3)+u(2)*v(2)+u(3)*v(1) 
... 

w(n) = u(1)*v(n)+u(2)*v(n-1)+ ... +u(n)*v(1) 
... 

w(2*n-1) = u(n)*v(n) 
 

The result of the convolution is exemplified by the 
matrix in Fig. 13 b. The centroid is the location of the 
pixel intensity threshold. The centroid coordinates for each 
line serve to the slope calculation using the least square 
method. 
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Fig. 13. (a) pixel values of ROI;(b) numerical derivation of pixel lines for calculating centroid points 
 

An example of calculation for the 7th line of pixels 
Fig. 13 a is shown in the diagrams in Fig. 14. Numerical 
derivation helps us identify the centroid of the line, the 
highest bar, diagram Fig. 14 b. 

After calculating the centroid for each line, the slope 
angle of light gradient is calculated relative to the y axis, 
Fig. 11, using the least squares method and linear re-
gression. To calculate the slope, we consider the 
movement from one-pixel line to another as the movement 
on the y axis, and de centroid point distance from the 
beginning of the line, coordinate x.  

The totality of the calculated centroid points has some 
distribution Fig. 15. Using the linear regression method we 
calculate the coefficients a and b, for the equation of the 

line of type f(x) = y = a + bx, which best approximates this 
distribution. 

For a set of experimental points x1, x2, ... xn; y1, y2, ... 
yn, the value of a is determined for the slope and value of 
b, for intercept. The least square method consists of 
minimizing the sum of squares errors between the values 
of yi (extracted from the experiment) and values of f(xi) 
calculated using the regression line. The formulas for a and 
b are: 

              (16)  

 

           (17)  

 

 
 

Fig. 14. (a) pixel line intensity chart, (b) numerical derivation of the pixel line for calculating the centroid, the highest bar 
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The summing is done from i=1 up to i=n. 
 

       (18) 

 

 (19) 

where: 

                       (20) 

 
The parameter a from the equation of the regression 

line y=a+bx represents the intersection of the regression 
line with the Y, if x=0, then y=a; parameter b represents 
the slope of the line, which is the tangent of the angle 
between the regression line and the horizontal line, Fig. 15. 
If the value of b is positive, then the dependence between 
the two variables is directly proportional, the increase of 
the variable x will lead to the increase of the y variable, if 
the value of the parameter b is negative, then the 
dependence is inversely proportional, the variation in one 

sense or another of the variable x will result in a variation 
in the opposite direction of the y variable. 

To note S is the square root of the ratio of the sum of 
squares of deviations from the estimated line to the 
number of data taken into account, more than 2, for 
determining the line. It can be said that the regression line 
represents the point of equilibrium in a bivariate 
distribution. The utility of the regression line is that it 
serves as basis for predicting y values associated with x 
values.  

For the calculus, the MatLab function was used: 
[p, s]=polyfit(n_lines, centroid_numbers, n); n_lines, 

is a numeric vector, which contains the number of pixel 
lines, centroid_numbers, is a numeric vector, contains the 
estimated centroid values, for each line, the points in 
variable n_lines correspond to those in the 
centroid_numbers, n represents the degree of polynomial 
estimation, the function returns the coefficients for the line 
equation that estimates the experimental data; the p, 
vector, has the length n+1, contains the polynomial 
coefficients for the least squares estimation; the s optional 
variable contains coefficients for estimating errors. 
 

 

 

 
 

Fig. 15.  Diagram of pixel lines and centroid points for each line in Fig. 13 b. For economy of space the chart is rotated at 90°; 
(horizontal axis, pixels(y) 

 
 

The numerical vector (centroid_numbers [12, 16]), 
centroid coordinates (for each line), obtained as a result of 
the calculations are illustrated in Fig. 15. The slope 
calculated by the least square method is -0.1 or about 5.8°. 

 

  (21) 

The oblique line traced through the coordinates of the 
centroid represents the slope of the light gradient on the 
optical sensor, which helps us build the ESF function. 

Axis xʹ, perpendicular to the light gradient line, Fig. 
10 b, Fig. 11, Fig. 12, on which the pixels are projected, to 
build the ESF function, is divided into sampling intervals, 
the method allows an over-sampling of light gradient on 
the xʹ direction, Fig. 12 b. In our case, the edge is 
relatively diffused, due to the optical phenomena on lens 
aperture, light diffusion on optical elements, chromatic 
aberrations. 

After calculating the angle of the fitted margin, the 
ROI pixels are projected on the xʹ, oriented on the direction 
of propagation of light gradient, Fig. 10 b and 12. The 
oversampling illustrated in Fig. 9, Fig. 12 allows us to 

record the decrease of the intensity of the light gradient in 
the x direction with one pixel pitch; the projection of the 
pixels is calculated using the trigonometric relationship, 
Fig. 9, the functions in the MatLab library and the mtf 
calculus software sfrmat3 [12]. 

 

 
 

Fig. 16 Experimental graph of the ESF function, (edge 
spread function), the transition from the dark to the light 

region is a characteristic of the optical system. Lower 
values on the vertical axis mean darker to black, higher 

values, meaning lighter shades to white 
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The calculation of the ESF function illustrates the 
variation of pixels intensity in the neighbourhood of the 
transition from dark to bright, depending on the quality of 
the optical system, the threshold may be more or less 
abrupt. The better the quality of the system, the steeper is 
the threshold. 

The optical system response, Fig. 10 (a), to the test 
object recording, slant edge of high contrast, is analogous 
to the response of an electronic circuit to a rectangular 
pulse, Fig. 17. 

 
 

 
 

Fig. 17. Optical system response to a rectangular input 
pulse (black and white equally spaced bars) 

 
The ESF function (edge spread function) contains the 

data needed to calculate the LSF function (line spread 
function), by applying the derivation operation with a 
function of the following form: 

 
 

2
11

ff
iif 


 .  (22) 

 
Is done as a digital filtering, by the convolution 

operation of the ESF function with a 1D matrix [-0.5, 0, 
0.5], the result is illustrated by the LSF function graph, 
Fig. 18, performed with the function from the MatLab 
software library. 

The LSF function, is the result of the numerical 
derivation of the ESF function, Fig. 16 represents the light 
gradient intensity distribution from black to white, on the 
propagation direction, the xʹ axis Fig. 11. It has the shape 
of a Gaussian pulse. This type of pulse can be decomposed 
into Fourier series of frequencies, by applying the DFT 
(Discrete Fourier Transform) and FFT (Fast Fourier 
Transform) analysis. 
 

 
 

Fig. 18. Line spread function, a) obtained by deriving the 
ESF function, Fig. 16 for noise elimination, the 

numerical filtering procedure was applied, b) the signal 
after applying the numerical filtering procedure, the 

Hamming window, and other smoothing methods 
 

Convolution. The elements of the numerical vector x 
[n] contain average values of the intensity in the vicinity of 
the slant edge, x[n] can have several hundreds of elements 
with values between 0-255 (depending on the ROI size). 
The result of the 1D convolution of two discrete signals is 
the rate of increase or decrease of the values in the space 
defined by the vector x[n], or the 1st derivative of the ESF 
function, Fig. 16 illustrates the method of convolution of 
two signals, x[n]=[34.200, 35.125, 37.000, 37.556, 34.714 
...] and h[n]=[0.500, 0, -0.500]. The vector h[n] (response 
function) is mirrored, then overlaps with the first term of 
x[n] and slides to the end of the value string of x[n]. The 
numbers that are one beneath another are multiplied then 
summed, according to the formula   
 
ሾ݇ሿݕ ൌ ∑ ሾ݊ሿݔ כ ݄ሾ݇ െ ݊ሿܰ

݊ൌ0   
k=m+n-1=5+3-1=7; n=5 
1) y[0]=x[0]*h[0] = x[0]*h[0]=34.200*0.5=17.100 
2) y[1]=x[0]*h[1]+x[1]*h[0]=34.200*0+35.125*0.5 =17.5625 
3) y[2]=x[0]*h[2]+x[1]*h[1]+x[2]*h[0]= 
 34.200*-0.5+35.125*0+37.000*0.5=1.4 
4) y[3]=x[1]*h[2]+x[2]*h[1]+x[3]*h[0]= 
 31.125*-0.5+37.0*0+37.556*0.5=1.2153 
5) y[4]=x[2]*h[2]+x[3]*h[1]+x[4]*h[0]= 
 37.0*-0.5+37.556*0+34.714*0.5=-1.1429 
6) y[5]=x[3]*h[2]+x[4]*h[1] =37.556*-0.5+34.714*0=-18.778
7) y[6]=x[4]*h[2]=37.714*-0.5=-17.357  

 
 

Fig. 19. Convolution of two signals, represented by two 
unidimensional matrices  

 
The modulation transfer function, Fig. 20, is 

calculated by the Discrete Fourier Analysis of the Line 
spread function, Fig. 18. Before applying DFT, the LSF 
function will multiply with a Hamming window type 
function, to prevent discontinuity errors. 

The MTF analyses the imaging optical system 
quantitatively. Quantify the resolution power for each 
spatial frequency, 10, 20, ... n, line pairs/mm. As the 
frequency of line pair increases, the contrast between the 
white and black lines decreases, and is given by system 
limitations, optical aberrations, diffraction on the lens 
aperture, light diffusion, etc. The contrast is defined as: 
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                            (23) 

 

Optical contrast input, 
 

for all 

spatial frequencies, Contrast system output, 

 

;  

 
 

 
 

Fig. 20. The MTF function, calculated by the Fourier 
series decomposition of the LSF function. On the 

horizontal axis the values are in cy / px or cy / mm. Cycle 
is a signal period. A white bar and a black bar of equal 
width, is a cycle. For representation in cy/mm, the value 
cy/px, will be divided into pixel size in mm, for example 
for a pixel size of 4.28 μm and frequency 0.1 cy/px, we 

will divide 0.1: 0.00428 = 23 cy/mm or 23 line pairs/mm. 
Curve a) - original signal without noise filtering, b) noise 

reduction via signal processing 

 
The MTF curve can take various shapes, steeper or 

wider, depending on the particular optical system, different 
slopes on certain spectral segments. This is a measure that 
reflects the performance of the imaging system. 

The calculus was performed using the MatLab 
function, y=fft(x,n), x, is the numerical input vector, data 
describing the LSF function, numerical vector of n 
elements. For discreet numerical data, the base for spectral 
analysis is the known method Discrete Fourier Transform. 
DFT transforms data describing space distribution into 
data describing the frequency space. 

DFT for vector x, of length n, is another y vector of 
length n: 

 

                       (24) 
 

ω is the complex frequency,    
The notation uses i for the imaginary unit, p and j for 

indexing from 0 to n-1.  
The vector data x is separated by a constant interval in 

space or time, dt=1fs or ds=1/fs, where f is the sampling 
frequency. The Fourier transform y has complex values. 
Absolute value of yp+1 measures the amount of frequency 
f=p(fs/n) present in the data. 

When light is transmitted through the lenses, there is 
loss of intensity, light diffusion, optical distortions, optical 
aberrations, circular aperture diffraction, all these losses 
lead to decreased resolution and contrast in imaging optics. 
The MTF curve is a useful characteristic to quantify these 
losses. 
 

 
 

Fig. 21. Fourier transform 
 
 The calculations were performed using the Microsoft 
Excel, Matlab, and sfrmat3 programs. We would like to 
express our gratitude to the creators of these extraordinary 
computing tools. 
 

 
4. Conclusions 
 
The obtained results are a contribution to the 

application and testing of the slanted-edge method to test 
the resolution of new optoelectronic devices. The role of 
monitoring systems for security objectives with varying 
degrees of risk is still important and topical. The novelty 
of the research resides in the application of the slanted-
edge method to study a featured photoelectronic device 
with adaptive optics, used in control and security 
applications. During the operation of the device, the 
optical parameters may deviate from the functional values 
due to mechanical vibrations, for example or other factors, 
degradation of front-facing protective coatings, other 
factors that can influence the resolution. The slanted-edge 
method focuses on soft procedures, allowing for remote 
resolution estimation, and it is sufficient to found an 
acceptable, sufficient enough, quality margin for 
registration 

Optical resolution testing using the slanted-edge 
method is topical and useful in that it does not need a 
specialized control stand equipped with expensive test 
charts. 

The current CMOS and CCD optical sensors are 
powerful enough to be used to test the lenses of the optical 
system. If in the past, to test the camera lens, a 
micrometric linear aperture and a microdensitometer to 
record the LSF function profile were used, today, the 
camera’s own sensor provides us with sampling 
frequencies of the order of pixel size, for example 1.2 ÷ 
4.28 μm, resulting in a maximum sampling frequency of 
0.5 cy / px (Nyquist) = 0.5cy / 0.0012mm = 416 cy / mm, 
sufficient to test an optical system. 
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The method has also certain limits. For example, the 
attempt to test the chromatic resolution of the 
optoelectronic device with a slant edge of orange colour 
resulted in unsatisfactory results. The orange colour in 
optoelectronic devices is obtained from Red and Green in 
various properties (e.g. R = 247, G = 179, B = 0). The 
Bayer filter of the CMOS sensor interprets and generates 
colours according to its predefined algorithms, the lenses 
can have unequal chromatic resolution. A low contrast 
image is generated at the output. Researches will continue. 
Many colour shades are corrected by the sensor, but this 
leaves us away from real optics measurements. 

During the testing, it is necessary to disconnect the 
contrast and sharpness functions to avoid inducing the 
calculation errors by artificially altering the pixel intensity.  

The image of the slanted-edge object before building 
the ESF must be carefully analysed to select the ROI 
(region of interest) suitable for calculations. The ROI 
region and the ESF function are the starting point of the 
calculations 

As the image of the slant edge is more diffused, the 
optical system has more imperfections. 

MTF of a colour image does not differ significantly 
from the MTF of the gray scale image. Therefore, in some 
cases, the image ROI can be simplified, converted to gray 
scale to reduce the amount of computation. 

The slanted-edge testing method of an optic lens 
system composed of lens adapters, filters, and optical 
sensors offers acceptable system resolution results. 
However, the apparent simplicity of the method requires a 
lot of accuracy, an initiation into the particularities of the 
measurement system. The slant edge must be smooth 
enough to minimize image defects. 

The described method is universally applicable, for 
thermal imaging cameras, infrared imaging cameras, X-
rays imager, medical imaging and radiological anatomy. It 
is a complement to the methods that use special test charts 
of advanced micrometric precision, linear micrometric 
slits. The method does not replace the classic method with 
precision test chart that is necessary for sagittal and 
tangential testing. 

To increase the accuracy and minimize the errors, the 
edge angle should be 7°-10° from the vertical or horizontal 
pixel line. 

The accurate performing of the recommended steps of 
the ISO 12233 and the thorough documentation ensure the 
satisfactory reproducibility of the measurement results. 
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